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Abstract-- The relatively new field of Evolvable Hard-

ware studies how simulated evolution can reconfigure,

adapt, and design hardware structures in an automated

manner. Space applications, especially those requiring

autonomy, are potential beneficiaries of evolvable hard-

ware. For example, robotic drilling from a mobile plat-

form requires high-bandwidth controller circuits that are

difficult to design. In this paper, we present automated

design techniques based on evolutionary search that

could potentially be used in such applications. First,

we present a method of automatically generating analog

circuit designs using evolutionary search and a circuit-

construction language. Our system allows circuit size

(number of devices), circuit topology, and device values
to be evolved. Using a parallel genetic algorithm, we

present experimental results for five design tasks. Sec-

ond, we investigate the use of coevolution in automated

circuit design. We examine fitness evaluation by compar-

ing the effectiveness of four fitness schedules. The results
indicate that solution quality is highest with static and

coevolving fitness schedules as compared to the other

two dynamic schedules. We discuss these results and of-

fer two possible explanations for the observed behavior:

retention of useful information, and alignment of prob-

lem difficulty with circuit proficiency.

1 INTRODUCTION

Although the underlying concepts of using simulated

evolution to manipulate hardware are decades old, it is

only in recent years that research in this area has at-

tracted significant interest [17, 6, 18, 19]. The nascent
field of evolvable hardware studies how simulated evolu-

tion can reconfigure, adapt, and design hardware struc-
tures in an automated manner. The field is almost ex-

clusively concerned with electronic circuitry, but appli-

cation areas where other types of physical structures are

designed or adapted by artificial evolution certainly fall

within the purview of evolvable hardware (e.g., designs

of trusses, antennas).

Research on using evolution to automatically create

novel circuit designs can be classified into two categories:

analog and digital circuitry. In the digital circuit do-

main, the Field-Programmable Gate Array (FPGA) [22]
has played a crucial role. The FPGA is a chip that con-

rains a large array of logic gates (e.g., AND, OR) and a
user-modifiable interconnection network to connect ele-

ments together. The distinguishing feature of the FPGA

is its ability to be programmed as many times as needed.

Each time the FPGA is re-programmed (the act of which

is commonly called reconfiguration) for new functional-

ity, the interconnections and gate logic change. This
software-changes-hardware paradox is reconciled by the

fact that the physical devices on the chip never change,

only the way signals are routed through the chip changes.

In practice, these chips are typically programmed to per-

form a desired function and are rarely re-programmed.
However, in an evolvable hardware setting, theses chips

are re-programmed over and over as evolution repeatedly

tests new designs. The important point is that the hard-
ware is nestled inside of the evolutionary process, allow-

ing for rapid solution testing (a common bottleneck in

many evolutionary algorithms). Some of the pioneering

work in this area was done by Higuchi [5] and Thomp-

son

The other circuit design domain and the focus of this

paper is analog circuitry. Analog circuits are of great

importance in electronic system design since the world

is fundamentally analog in nature. While the amount
of digital design activity far outpaces that of analog de-
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In space applications, automated/evolutionary design

of analog circuitry could hold mar_y benefits, especially
for controller hardware. In problems where actuator out-

puts need to be rapidly modulated in response to sen-

sor feedback, analog circuits have some clear advantages
over digital circuits. Digital control circuits necessitate

a costly bandwidth-limiting analog to digital conversion
(ADC) of the sensor signal and then a reverse conversion

(DAC) from the processed digital signal to the analog
actuator control output. These transformations lose in-

formation and introduce latency. In many tasks the high

frequency component of the sensor signal that is lost in

the analog to digital conversion is crucial to usefully con-

trolling the actuators. For example, to implement force
control of a robotic manipulator, a critical portion of the

strain sensor signal is lost during conversion from analog
to digital. In such cases, analog circuits are ideal because

they provide a very high bandwidth sensor-to-motor sig-

nal transformation and avoid any time-consuming con-

version between analog and digital signals.

Although robotic controller technology has greatly im-
proved over the last decade, certain advanced robotic ap-
plications cannot be realized due to limitations in con-

troller processing speed, size, and power consumption.

Two such applications are robotic drilling and real-time

rover-astronaut interaction. Drilling from a mobile plat-
form is difficult because the drill bit forces and position

can shift rapidly causing damage to the bit - a fast force
control loop could alleviate these difficulties. Rover-

astronaut interactions are severely limited by rover speed

and autonomy, both of which would benefit greatly from
fast control loops. To overcome the main limitation of

using analog controllers, namely the difficulty designing

analog circuits, the evolvable hardware techniques pre-
sented below could be applied to automatically generat-

ing controller circuit designs.

The remainder of the paper is as follows. First we dis-

cuss the genetic representation of analog circuits and de-

scribe the genetic algorithm that is used. Then we cover

the design tasks and the experimental results from our
evolutionary design program. A description of a coevo-

lutionary method follows, including results in automated
amplifier design. Lastly we discuss our conclusions re-

lating to potential space-related applications of evolvable

hltP( lw/tr(,,

2 CIRCUIT PI.EPRESENTAT[ON

lit (lesigniug ;in (_ffe(:tiv(r circuit representatioli for use in

evoluti()mtry s(_ar(:li, the f()lh)wing properties are among
the most ([rsirable. First, the representatiott should per-

mit any circuit or at le_t a wide range of circuits to be

represented. If it is known a priom that certain topolo-

gies are well suited to a specific design t,'Lsk, topolog-

ical restrictions inherent in the represerltation may be
beneficial since the search space will be reduced. Con-

versely, not having this limitation may bring to light
novel designs that human designers have never envi-

sioned. Second, the genotype conversion algorithm (the

circuit constructing process) should run as fast as possi-

ble. Clearly if numerous traversals of the circuit graph

structure are required in order to guarantee a valid cir-
cuit graph, the performance hit will be commensurate.

For an n-component circuit, a reasonable upper bound

would be O(n). Third, the representation should be syn-
tactically closed so that genetic operators do not create

invalid circuit graphs I from those that are valid. The

circuit representation we present here was designed to

have these properties.

Circuit designs are constructed by an automaton that

is programmed via a set of low-level instructions. This

automaton is programmed in a small "language" de-
signed for building circuits. In its current incarnation,

the language contains only component-placing instruc-

tions (e.g., control instructions are not included). This

language has the desirable property that virtually all
possible sequences of instructions result in a valid electri-

cal circuit. This property is important because it greatly

limits the "out-of-bounds" regions of the search space
containing invalid circuit graphs. Thus, evolutionary

search will spend nearly all its time generating valid

circuit graphs. While this is a beneficial, non-trivial

achievement, we do lose the ability to generate every
possible circuit topology. This is not considered a draw=

back for the circuit types we investigated since a vast
number of topologies and existing circuit designs could

be encoded using this approach.

Each instruction places a circuit component and di-
rects the movement of the automaton. The five ba-

sic instruction types are: z-move-to-new, x-cast-to-

previous, x-cast-to-ground, x-cast-to-input, x-cast-to-

output, where x can be replaced by R (resistor), C (ca-
pacitor), L (inductor), or transistor configuration. In a

circuit design task involving only inductors and capaci-

tors (an LC circuit), ten opcodes would be available to
construct circuits (five for capacitors and five for indue-

tots).

t Note that a graph could be a valid circuit graph, yet not

make sense a_ an electrical circuit - for example, di_imilat voltage

source_ connected in parallel.
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(:reatq,d nl)d+; (the "ax:tiv(," no<h, is the (tllrrellt locati<)n of

the automaton)+ Tlm newly created node theu becomes

tlm active node. The ca.+t-toin._tructionsplaceone end

tJf tht + compotmut at the active node and the other at

either tit(, ground, input, output, or previously-created

node. After executing a cast-to instruction, the automa-

ton remains at the active node. The input and output

ziodes are the overall input and output nodes of the cir-

cuit _ opposed to the input and output of the placed

component. [llustrations of two instructions that place

resistors are shown in Fig. 1.

Instruction Outgoing Node Active Node

z-move-to-new new node becomes new node

x-cast-to-previous previous node unchanged

x-cast-to-ground ground node unchanged

z-cast-to-input input node unchanged

z-cast-to-output output node unchanged

Table 1: Summary of opcode types used in current sys-

tem. x denotes the component type: resistor, capacitor,

inductor, or transistor configuration.

The circuit is constructed by the automaton inside of

a template circuit. The design tasks presented here use

a template having one input and one output terminal as

shown in Fig. 2. An ideal voltage source v+ is connected

to ground and to a source resistor Re. The circuit's

output voltage is taken across a load resistor R+.

s£az-t node I

I
----?

I
R, ,

evolved

circuit

I
end node

I

I

,)R,

_.--

Figure 2: Template circuit: the evolved circuit is located

between fixed input and output terminals, v, is an ideal

voltage source, Rs is the source resistance, Rl is the load
resistance.

byw<:<)d[+s. For ittstru<:ti()tt._ that t;tk,, ;t (:()tttl)on_,tit vahte

;k_ all argutn<mt, tile first byt<.' is the it_stru(:tion, and the

[tP,xt t|trf_, repre,m+nt ttm (:ompon(+nt vahle (r(,sistancc, ca-

pacitance, an(! inductance vahws). For transistors, com-

ponent values are at)t nee(h_l. Using three bytes allows

the ('olnpolR,t|t Yallles tO tak_ + on one of 256 :_ values, a

suflicit+ntly fine-grained r,+)htti_m. The raw tmmerical

value of tlmse bytes was tlwn scaled into a reasonable

range, depending on the type +)f component. Resistor
values were scaled sigmoidally between 1 and 100K ohms

using 1/(l + exp(-1.4(10x - 8))) so that roughly 75%
of the resistor values were biased to be less than 10K

ohms. Capacitor values were scaled between approxi-

mately 10 pF and 200 pF and inductors between roughly
0.1 mH and 1.5 H.

Transistors are current amplifying and switching de-

vices that have three terminals. 2 In this paper we use

bipolar junction transistors as shown in Fig. 3. Using

devices with three terminals makes it harder to design a

circuit representation that achieves the properties that

we desire. If a circuit constructing automaton were to
connect one terminal of a transistor at a node, then two

active nodes would result each requiring its own automa-

ton. This could happen repeatedly resulting in an expo-

nential growth of automata constructing the circuit in

parallel. Two problems are obvious: how will the mul-

tiple constructing "threads" interconnect, and how will

the dangling nodes that will likely appear at the end of

the circuit constructing process be handled? To allow
interconnections between constructing threads, one can

introduce a spatial dimension and let the automata form
interconnections as they criss-cross each other's path. To

handle the dangling node problem, one can determinsti-

cally tie dangling nodes to each other, to internal nodes,

or to the output node for example. Another solution is

to simply prune those nodes. Although we have consid-
ered these and other solutions, a simpler way of handling

transistors is also a viable alternative: treating them as

having only two terminals.

collector collector

emitter emitter

(a} (b)

The lists of instructions manipulated by the GA are

variable-length lists so that the size of the circuit can be

evolved. When the automaton reaches the last compo-

nent to place in the circuit, we arbitrarily chose to have

the last active node connected to the output terminal by

a wire (accomplished by connection of a I/_f/resistor).

By doing so, we eliminate unconnected branches.

As assembly language instructionsare mapped toop-

codes, our circuit-placinginstructionsare mapped

bytecodes. Instructionsare represented by up to four

Figure 3: Bipolar junction transistor symbols: (a) npn;

(b) pnp.

To work with transistors as devices with two termio

nals, we have the third terminal hardwired (fixed) to
one of the following pre-existing circuit nodes: ground,

power supply (positive or negative), input, output, the

2Four if the substrate terminal iJ included, but we connect the

stttmtrate to ground and hence ignore it,
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Figure 1: Effect of placing a resistor with (a) move-to-new, and (b) cast-to-ground instructions.

previously placed node, or even to itself. Such a scheme

allows a wide variety of configurations. To understand

these configurations we label the terminals in a generic

way: incoming, outgoing, and fixed (see Fig. 4). The
incoming terminal is the terminal that the circuit con-

structor will connect to the active node. The outgoing

terminal will become the new active node (for move-to

instructions) or it will be cast to a pre-existing circuit
node. The fixed terminal is hardwired as its name im-

plies.

incoming _ outgoing
incoming---_ o_tgoin 8

£_ed

(a) (b)

Figure 4: Labeling of terminals: (a) devices with two

terminals have incoming and outgoing terminals; (b) de-
vices with three terminals are treated as two-terminal

devices by having a fixed connection at the third termi-
nal.

To give a sense of the types of transistor configura-

tions possible, the chart in Fig. 5 illustrates 52 config-
urations for an npn transistor whose base terminal is

designated incoming. Each entry shows the connections

that the automaton makes when executing the instruc-
tion listed in the first column. The last two columns

show self-connections, some of which are frequently used

by circuit designers. Similar charts can be produced for
npn transistors having the collector and emitter serve

as the incoming terminal, as well as the three analogous
charts for pnp transistors. There are configuration re-

dundancies so that each chart will not have exactly 52
configurations. In addition we exclude emitter-collector

self-connections since this shorts out the transistor.

This approach to representing circuits embodies the

desirable properties outlined above. The encoding has
syntactic closure since any combination of instructions

produces a valid circuit graph, and since every instruc-
tion contained in the genome results in a circuit com-

ponent, there are no non-coding genome segments. The
circuit construction proce_ is O(n) since it does not re-

quire any repair (e.g., removal of unconnected nodes) op-
erations. Lastly, this approach can generate a wide range

of circuit graph topologies. The topological restriction is

as follows: circuit branches off of the main constructing
thread cannot, in general, contain more than one node

(there are some exceptions to this). The constructing

thread is the sequence of components that are created by
the move-to-new instructions. The constructing thread

itself can be of varying lengths and can contain both

series and parallel configurations. In spite of these lim-

itations, our system allows the creation of circuits with

a large variety of topologies, including numerous topolo-

gies seen in hand-designed circuits.

3 DESIGN TASKS

The design tasks considered in this paper are analog cir-

cuts for filtering and amplification applications.

A low-pass filter is a circuit that allows low frequen-

cies to pass through it, but stops high frequencies from

doing so. In other words, it is frequency selective in that

it "filters out" frequencies above a specified frequency.

The unshaded area in Fig. 6 depicts the region of op-

eration for low-pass filters. Below the frequency fp the
input signal is passed to the output, potentially reduced

(attenuated) by Kp decibels (dB). This region is known

as the passband. Above the frequency fs, in the re-

gion is called the stopband, the input signal is markedly
decreased by Ks decibels. Between the passband and

stopband the frequency response curve transitions from

low to high attenuation. The parameter located in this

region, re, is known as the cutoff frequency.

One of the design tasks concerned designing a circuit
within the class of "Butterworth" filters. Butterworth

filters are very common and circuits that implement

them are readily found in filter design tables [9]. The

attenuation (negative gain) of Butterworth filters is of
the form v/l/(1 + (f/fc) 2N) where f is the input fre-

quency and N is the order of the filter. The higher order

a filter has, the sharper the "knee" of its gain curve, and

the more complex the circuit. A plot of the attenuation

for a third-order Butterworth filter is shown in Fig. 7.

The amplifier design task chosen was the inverting op-

erational amplifier. Such a circuit has found wide appli-

cation and is considered one of the workhorses of analog
circuitdesign. Figure 8 shows the symbol and connec-

tionsfor an idealinvertingamplifier.This circuitgen-

eratesan output voltage (vo)that consistsof the input
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shown), and "N.A." denotes "not applicable."Only npn transistorsare shown although analogous configurationsare
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Figure 6: Low-pass filter terminology and specifications.

The shaded regions represent out-of-specification areas.

An example frequency response curve that meets speci-
fications is shown.

voltage (vi) multiplied by a gain factor, A. Voltage gain

is thus equivalent to Vo/Vi. It is common to express gain

values in decibels (dB) using 20 logt0(A ). Amplifiers may

be either inverting or non-inverting, where an inverted

output signalhas a 180 ° phase shiftcompared to the in-

put. The dc gain of the amplifierrefersto the gain when

only constant voltage/currentsources are applied. The

linearityof the gain isthe degree to which the gain re-

mains com_tant across input voltages: ideally the voltage

transfer characteristic (uo vs. v+) should be linear. The

dc component that shifts the entiresignal up or down is

0

_0

• _ ., . . ., . . ._ . . _ . .

Figure 7: Gain on a logarithmic amplitude scale for a
third-order Butterwurth filter.

called the dc bias of the circuit. Power dissipation is the

amount of power used by the circuit and is indicative of

the amounts of current flowing in the circuit. For simple

amplifiers, there are publications available that catalog

many designs. Since there are numerous parameters in

amplifier design (e.g., input/output impedance, power

dissipation, distortion, common-mode rejection, power

supply rejection), the design task can become quite chal-

lenging and typically requires an experienced designer.

For the amplifier design experiments below, we take into
account four objectives: dc gain, linearity of gain, dc

bias, and power dissipation.



Figure8: Ideal inverting amplifier showing how gain is

set by the ratio of the feedback to source resistor.

4 EXPERIMENTAL RESULTS

Filter Design Tasks

Three filter design experiments were performed. In each

experiment, 10 runs were performed and we present the

circuit having the highest fitness value across all runs.

The experiments increased in difficulty so that filter 3

represents a challenging design task, while filter 1 is Least

challenging. Table 2 lists the target specifications for

each of the experiments.

Filter No. fp (Hz) fs (Hz) Kp (dB) K, (dB)

I I00 4000 1.29 27.12

2 925 3200 3.01 22.00

3 i000 2000 0.01 63.50

Table 2: Target specifications for filter design tasks.

The GA parameters remained the same within a given
experiment, but varied in the number of evaluations

(circuit simulations): filter 1 runs had 30,000 evalua-

tions, filter 2 had 3.6 million, and filter 3 had 1 million.

These values were arrived at by experimentation and

constrained by practical issues such as the availability
of workstations.

For the filter experiments, fitness was calculated to

promote the regression of the evolved circuit's frequency

response toward that of the target. Error values were

computed as the absolute value of the difference of the

individual's output and the target output. These error

values were summed acrossevaluation points to arrive
at a fitnessvalue.

Electronic Stethoscope Circuit - The first filter design
task was set up to generate a filter suitable for use in

an electronic stethoscope. In this application, it is de-

sired to filter out the extraneous high-frequency sounds

picked up by a microphone which make it difficult to lis-

ten to (low-frequency) bodily sounds (e.g., a heart beat-

ing). As such, the frequency response specifications do

not need to be extremely accurate since the human ear

cannot discern frequencies that are close together. The

target frl+(illcucy respq)nsc ([itt;t Wit."; taken froul +nt +l_:tual

electronic stethoscope, whi<:h w+m built with a cutoff fre-

quency of 796 Hz corresponding h) an output voltage of

approximately i volt. This circuit is relatively easy to

design and so we chose it a,_ our first design task. The

cc-b<)t instruction set consistc.d <)f ten instructions, five

for resistors and five for capacitors, which allowed for the

construction of an RC low-pass filter. The evolved circuit

is shown in Fig. 9(a) and its frequency response, which

matches almost exactly the target is shown in Fig. 9(b).

It was found in generation 3 of a 10-generation run that

had a population size of 3000, an indication that this

design task was relatively easy. The circuit exhibits the

standard design for simple low-pass filters: a resistor

(R2) in series with the source to form a voltage divider

at low frequencies (Ct open), and a capacitor (CI) across

the output to short it at high frequencies.

5v<

5.M

C1 0.000162 R'J i 671.8973

RL

IE14

(a)
i

a

oJ

(b)

Figure 9: (a) Evolved low-pass filter for use in an elec-
tronic stethoscope (units are ohms and farads}; (b)

Nearly identical frequency response curves for evolved
and actual electronic stethoscope circuit. The frequency

axis is scaled logarithmically.

Butterworth Low-pass Filter - The second low-pass filter

design task had specifications that were more difficult to

achieve than the first filter: both the passband and the

stopband were longer, thus requiring the transition to

be sharper. We chose a circuit that can be built using

a 3rd-order Butterworth filter and having a frequency

response of the form seen in Fig. 7. The specifications
are listed under filter number two in Table II.

Such a filter design can be derived using a Ladder topoi-



ogy containing _wo capacitors and one inductor and com-

i)on(,llt vallleS fi)un(| ill published tables. Because we

want_d to (lc_igu an LC [ow-pa._s filter, the cc-bot in-

struction _t consiste(t of only capa(:itor and inductor

instructi(_ns. The evo[ve([ circuit that meets these, spec-

ificati4ms is shown in Fig. 10 and its frequency respon_

is showu in Fig. ll. It was found in generation 22 of a

run that h;_ a population size of 18,000.
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Figure 10: Evolved 3rd-order Butterworth low-pass filter

(units are ohms, farads, and henries).
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Figure ii: Frequency response curve for evolved 3rd-

order Butterworth low-pass filter.Attenuation specifi-

cations are also shown. The frequency axis isscaled

logarithmically.

Third Low-pass Filter- The third low-pass filterdesign

task had specificationsthat were the most stringent:in

addition to the passband and stopband being increased,

the attenuationparameters were tightened(seeTable If).

These specificationsare similarto the fifth-orderelliptic

filter described in [10]. In that work, the evolved LC

circuit satisfies Kp ffi 0.3 dB and Ke ffi 60 clB. Another

evolved low-pass falter circuit [23] had the same stopband
and passband frequencies, but less demanding attenua-

tion specifications (K'p = 1.6 dB and Ka ffi 24.8 dB). The

evolved circuit is shown in Fig. 12 and its frequency re-
spouse isseen in Fig. 13. Micro-ohm resistorswere added

as a convergence aid forthe circuitsimulator,and can be

ignored for analyticalpurposes. This circuitwas found

in gcu,_ration 997 of a run that had a pol)ulation size

of 1000. The cc-bot instruction sequence and SPICE

netlist for this circuit are inclu(h_d for rcfi;rcnc_; in the

Appen(lix.
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Figure 12: Evolved circuit satisfying target specifications
for filter number three.
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Figure 13: Frequency response for filter number three.

Amplifier Design Tasks

Two amplifier design experiments were performed. In

each experiment, 10 runs were performed and we present

the highest performance circuits found across all runs.

The goal was to design an inverting amplifier capable

of a de voltage gain up to a maximum of either 100 dB

or 120 dB, while minimizing de bias and maximizing

linearity over the de gain. Population size was set to
1200 individuals, and each run proceeded for 5000 gen-

erations, giving a total of 6 million circuit evaluations
per run. The difference between the two sets of exper-

iments is that in the first set, the maximum gain was

set to be 120 dB, and in the second set, 100 dB was the

maximum gain. The maximum gain possible is set by

using feedback resistors (labeled R_-s). For an ideal in-

verting amplifier (as shown in Fig. 8), the magnitude of

the gain of the amplifier is simply R_/Rs, where Rs



i.s tap _ollr('(: r_,sist()r.Fitnoss w_l.l calc:lllatc(l ill it [llltn-

ner similarto the work on aml)lifiersin [10I. An error

vahtcis('omput(M as the sum of the ticgain penalty(the

target gain nfinus the obsc'rved gain), the dc I)ias (zero

d(: F)i_u_is hit,al), and the (l(_gr_'e to which th(: tic gain is
lilmar.

7,5 dB Inverting Amplifier - In the first set of exper-
iments ttle maximum voltage gain was set at 120 dB

(10_). The amplifier having the best performance had

adc gmn of 74.53 dB (5324.40). Figure 14 shows the

sche,natic for this circuit. It was found in generation

4866, and had a dc bias of 3.64 volts and a power dissi-

pation of 0.82 watts.
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Figure 14: Circuit schematic of evolved 75 dB amplifier.

The dc behavior is best understood by examining the

major current pathways in the circuit. The current

through the load is the key quantity since it is converted
to a voltage by the load resistor and hence forms the

circuit's output. Nearly all of the dc current flowing
through the load resistor originates from the power sup-

ply connected to transistor QT's collector. Q7 is biased

in such a way as to supply Q8's base with approximately
36.4 mA of current. This current is divided so that

18.1 mA flows out of Q8's emitter and 18.3 mA out of

Q8's collector.Resistor R2 isa tiny resistancethat was

positionedinorder to connect transistorQ9 to the out-

put (the lastcomponent isforcedto connect to the out-

put terminal). Thus R2 can be ignored,and transistor

Q9's 18.4mA current flowsinto the output node. Cur-

rentsare summed at node 255 to givethe loadcurrentof

36.4 mA which flowsthrough the load resistancetogive

3.64 voltsoutput. Because thereisa negligibleamount of

current flowingthrough transistorsQI through Q4, the

utilityof these transistorsisunclear. Components that

are essentiallynon-functional,are quitecommonly seen

in evolutionarydesign applications.Figure 15(a) shows

the time domain response.Amplificationofa I kHz sine

wave having a I microvoltamplitude can clearlybe seen.

Figure 15(b) shows the frequency response.The ac gain
remains flatat 74.36 dB untilitloses3 dB at 7.59 kHz

(its3 dB bandwidth). Figure 16 shows the dc transfer

characteristic.The dc bias of 3.64 voltscan be seen at

the voltageinput of zero volts.
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Figure 15: Small signal behavior of 75 dB evolved ampli-

tier: (a) time domain input waveform is 1 kHz (bottom)

which is inverted and amplified (top); (b) frequency re-

sponse showing 3 dB bandwidth of 7.59 kHz.

85 dB Amplifier - In the second set of amplifier exper-

iments the maximum voltage gain was set at 100 dB

(105). The amplifier having the best performance had

a dc gain of 85.41 dB (18,642.33). Figure 17 shows the
schematic for this circuit. It was found in generation

3635, and had a dc bias of 5.44 volts and a power dis-

sipation of 8.17 watts. The dc current delivered to the

load is mostly supplied by the 15 volt battery attached

to the collector of transistor Q7. Transistor Q7 is con-

ducting with the sum of its base and collector currents

flowing out of its emitter. QT's base current of 13 mA is

supplied by transistor Q6. As in the previous amplifier,

the utility of transistors Q1 through Q3 is unclear.

Input signal inversion and amplification are seen in
Figure 18(a) which shows the time domain response to an

ac input of 1 microvolt at 1 kHz. The circuit has a fiat-

band gain of 85.46 dB and a 3 dB bandwidth of 282.8 kHz

(Figure 18(b)). The 3 dB bandwidth is significantly bet-

ter than the previous amplifier. Figure 19 shows the
dc transfer characteristic. The dc bias of 5.44 volts can

be seen at the voltage input of zero volts. The slope,

the magnitude of which is the gain, is negative since the

amplifier is inverting the signal.
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Figure 16: DC transfer characteristic of 75 dB amplifier.
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Figure 17: Circuit schematic of evolved 85 dB amplifier.

5 COEVOLUTION AND OTHER FIT-

NESS SCHEDULES

Using the same amplifier design task described above,

we now turn our attention to comparing four methods
of evolutinary search. A fitness schedule is contruct that

modifies how a circuit's fitness is computed during the

GA run. For example, one could use a fitness function

ft during generation 1, f2 during generation 2, etc. Four

fitness schedules, one of which embodies coevolutionary

concepts, are discussed below.

The first, called static for short, refers to a single fit-

ness function that isused to evaluate every individual

in every generationof the run. The second was a fixed

fitnessschedule, meaning that the fitnessfunction was

modified in a pre-determined manner every k genera-

tions,forsome constant k. Thus the same fitnessfunc-

tion evaluatesgroups of kM individuals,where M isthe

population size.The thirdfitnessschedule we calladap-

tivebecause it can change the fitnem function dynami-

cally based on the performance of the population. The

fourth fitness schedule is coevolutionary search whereby

a second of population consisting of problem di_culties
(target vectors) evolve based on the performance of the

circuits in the main population.

Static Fitness Schedule

The static fltne_ schedule is simply the standard evalu-

ation techn!que in genetic algorithms [7]: a single fltnaa

om _ i}ml _ ,_MI _ ,)ram m )mmm
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Figure 18: Small signal behavior of 85 dB evolved ampli-

tier: (a) time domain input waveform is 1 kHz (bottom)

which is inverted and amplified (top); (b) frequency re-

sponse showing a flatband gain of 85.46 dB.

function is used to evaluate all individuals throughout
the run. The fitness function used is similar to those

described in [10, 13}. Briefly, it is a sum of normalized
error values, where the errors are the shortfalls from the

desired objectives: dc gain, dc bias, power dissipation,

and the linearity of the dc gain. The gain is the slope

of the dc transfer characteristic (i.e., the output volt-

ages when the input voltage is swept across five input

voltages). The slope, m, is calculated by using the end-

points of the transfer characteristic. The linearity of the

gain is computed as Ira-roll +lm-m_.l, where rn_ is the

slope of the line segment formed by the two leRmost out-

put voltages and mr is analogous for the two rightmost

output voltages. The dc bias is simply vo when v, = 0
volts, and power dissipation is the amount of power con-

sumed during circuit operation. The gain objective was

60.0 dB, the bias and power dissipation objectives were

1.0 volt and 1.0 watt, respectively, and the linearity ob-

jective was 10.0. These values were chosen based on our

previous work [14]: they represent a moderately di_cult

design task that we knew to be solvable.
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Figure t9: DC Transfer characteristic of 85 dB amplifier.

Fixed Fitness Schedule

The fixed fitness schedule is a pre-determined schedule
of fitness function modifications. As used in the ex-

periments below, the difficulty-level of the fitness func-

tion is increased every 50 generations. With a total of

5000 generations, this allowed for a total of 100 'kiif-

ficulty steps." Each of the fitness functions used over
the course of the run are of the same form as the fit-

ness function used in the static schedule above. Writing
our gain, bias, power, and [inearity objectives as a tar-

get vector, (G, B, P, L), we specified that the difficulty

level begins at (1.0, 10.0, 10.0, 1000.0) (easiest) and ends

at (60.0, 1.0, 1.0, 10.0) (most difficult). The increases in

difficulty are then evenly divided over the 100 steps, per

objective. This is admittedly an arbitrary schedule, but

that is an inherent property of a fixed schedule - it is sub-

ject to the biases of the implementor. Such biases can
be advantageous if knowledge of the fitness landscape is

known a priori, and potentially disadvantageous other-
wise.

tim .nalm_ a._;ill tim c,th,,r litttc._sschc, hdc._. Tim tar-

g_t vector population cousist.s ,)f individuals that spec-

ify problem difficulty. As dc,s_:ribrd abow,, targ_t vec-

tors are denoted (G,/3, P, L), representing gain, bias,

power dissipation, and gain lim?arity, respcctiw_ly. The

imlividual targets are threshold values - a target is

"'solved" if a circuit's perf()rmance equals or surpasses

(either above or beh)w, as appropriate) the thresh-

old specified. For example, (63.0,0.6,0.8,9.5) solves

(60.0, 1.0, 1.0, 10.0), but (58.0, 0.6, 1.2, 18.0) does not. As
with the other fitness schedules, the ideal target vector

used was (60.0, 1.0, 1.0, 10.0). The gain target is satisfied

if a circuit's gain was 60.0 decibels or greater. The three.

remaining targets were satisfied if the circuit's perfor-

mance is less than or equal to the target values.

Target vectors are represented as a list of floating point

values that are mutated individually by randomly adding

or subtracting a small amount (5% of the largest legal

value). Single point crossover was used, and crossover

points were chosen between the values.

Fitness of individual circuits in the main population

was computed as follows. Circuit i "plays" each target

vector in the second population and a score, s_, is com-

puted:

1

sz = Z total # circuits

j_tv, that solve tvj

where tvS'_ is the set of target vector indexes such that

circuit i solves tvj. Note that the denominator in the
above fraction is guaranteed to be greater than or equal

to one due to the restriction on j. Then sz is normalized

linearly between its upper and lower bounds such that
0.0 is the best score and 1.0 the worst:

F(circuit,) = 1.0 - s_/M2

Adaptive Fitness Schedule

The adaptive fitness schedule is identical to the fixed
schedule described above except in the following re-

gard: difficulty is incremented "on-demand," whenever

the current difficulty is solved by at least one circuit in

the population. As in the fixed schedule case, 100 diffi-

culty steps are provided for. If a circuit solves the 100th

fitness function before 5000 generations, it has success-

fully found a compliant circuit, and the run halts. On the
other hand, if 5000 generations elapse and a compliant

circuit is not found, the run halts at whatever difficulty
level it has reached.

Coevolving Fitness Schedule

The main difference between the coevolving fitness

schedule and the other dynamic schedules is the in-

troduction of a second population consisting of target

vectors (tv). The first population of circuits remains

where AI2 is the sizeof the target vector population.
The effectof s isto reward circuitsthat solvethe more

difficulttargetvectors.A targetvector has the greatest

difficultylevelwhen exactlyone circuitcan solveit. If

many circuitscan solve a particulartarget vector,the

fitnesscontributionins isshared among the circuits[16].

Fitnessof an individualtargetvector iscomputed as

follows.Let xj denote the number of circuitsthat solve

tvj,and Mt be the circuitpopulation size.The fitnessis

essentially xj, scaled and normalized, with a tractability
const raint:

1.0 z) = 0f(tvj) = _!:Ti(x i - 1.0) z i > 1

The tractability constraint gives a target vector a score

of 1.0 (the "worst" score) when no circuits can solve it.

This puts pressure on the target vector population to

pose difficult, yet solvable problems to the circuit popu-
lation.
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static 44.47 0.35 0.69

fixed 47.59 0.64 i.21

adaptive 54.13 1.23 1.96

(:oevolving 46.7[ 0.15 0.41 r 340.74I89.75

fit I 1( L'i,_ Is(:ho.duh_ me;ui std. dev.

static 2.12" 0.67

fixed 1.48 L.12

aclaptiw_ L.L6 I. L_

coevolving 2.0_* 0.49

Table 3: Mean values from the performance of the best
circuits found under 25 runs of each fitness schedule. The

ideal target vector was (60.0, 1.0, 1.0, 10.0).

6 EXPERIMENTAL SETUP

Using the four fitness schedules described above, 25 runs

using each schedule were made resulting in a total of 100

runs. The same pseudo-random number generator seed
was used across each set of four distinct fitness sched-

ules so that the generation zero individuals would be

identical. Common to each run were the following pa-

rameter settings: population size was 600, crossover rate
was 80%, mutation rate was 5%. For the coevolution

runs,the target vector population used the following pa-
rameters: population size was 600, crossover rate was

80%, mutation rate was 50%. Because crossover points
were chosen between target vector values, this mutation

rate was set high to encourage new values to appear in

the population, not just those produced in generation 0.

Evolution of amplifier designs was accomplished us-

ing the system described in [13]. Briefly, circuits are
represented as lists of circuit-construction instructions

that program an automaton to design a circuit. Resis-

tors, capacitors, and bipolar junction transistors were

the allowed components. The method of incorporating

transistors is described in [14]. Circuits were required to

contain at least 10 components up to a maximum of 150.

7' EXPERIMENTAL RESULTS

To assess the quality of each fitness schedule, we exam-

ined the highest fitness circuits from each run. The per-

formance of these circuits is quantified in corresponding

output vectors which, like target vectors, specify gain,
bias, power dissipation, and linearity values. Table 3

gives the mean values of individual objectives across out-

put vectors for each fitness schedule. The data suggest

that static and coevolving fitness schedules performed

better than fixed and adaptive schedules. Another way

of measuring the quality of the fitness schedules is to look

at the number of objectives solved in each run (a_um-

ing each of the four objectives is of equal importance).
Table 4 shows the mean and standard deviation for the

number of objectives solved for each schedule.

Here the relationship among the schedules is clearer:

static and coevolving fitness schedules performed nearly

the same and did better than the performance of the

Table. 4: Mean and standard deviation for the number

of objectives solved for 25 runs of each fitness schedule.

Means marked with asterisks (*) are not significantly

different from each other, and are significantly different

(p < 0.02) from those means without asterisks.

fixed and adaptive schedules. A two-tailed t-Test showed

that the static and coevolving means are not significantly

different from each other, and are significantly different

(p < 0.02) from the fixed and adaptive means.

One of the motivations behind using coevolutionary

search is the notion that the problem difficulty is ad-

justed automatically, rather than having to manually

specify it. To get a sense of how coevolution accom-

plished this, Figure 20 shows four plots (one for each

target objective), each containing 25 curves (fitted using
a fourth-order polynomial). The plots show how the val-

ues of the best target vectors found in each generation

fluctuated during the run. The thick curve represents

the run that found a compliant circuit (i.e., it solved

(60.0, 1.0, 1.0, 10.0)).

What is most striking is the way coevolution, within

the first few generations, reduced the demands for gain

performance because it was the most difficult criterion

to meet. Just as rapidly, the other three objectives were

made more demanding because they were relatively easy

to satisfy. Then as the circuit population scored better in

gain, it did so at the expense of power and linearity: both
power and linearity are seen peaking near generations
1000-2000.

From the results it is seen that static and coevolution-

ary fitness schedules outperformed the fixed and adap-

tive schedules. Although is not completely clear why

this happened, we can offer potential advantages of the

static and coevolutionary schedules relative to the fixed

and adaptive schedules. First, because a static fitness

function induces a fitness landscape that never changes
over the course of evolution there is never the possibility

of getting "thrown off" a gradient (as would be the case
if the fitness function changed). Second, we designed

coevolution so that it would keep the level of problem

difficulty near the leading edge of circuit proficiency. De-

velopmental theory suggests (e.g., [1]) that keeping task

difficulty in line with solution performance aids learn-

ing. Third, the fixed and adaptive schedules are poten-

tially "handicapped" by the somewhat arbitrary choice

of manually-crafted schedules.
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Figure 20: Highest fitness target vector values over the

course of all coevolution runs. The y-axes represent the

difficulty of the objective with 0.0 being the target (or
most difficult) value, and 1.0 being the easiest objective
value. The thick curves represent the run that found

a compliant circuit. Curves were fitted using a fourth-

order polynomial, and therefore sometimes appear above
1.0 and below 0.0.

8 DISCUSSION

As a step towards demanding space-related applications,

we have presented encouraging results of an evolvable

hardware system capable of automatically desinging ana-

log circuits. We showed that a linear circuit representa-

tion and evolutionary search can automatically produce

circuit designs of low to medium difficulty in two appli-

cations. Detailed simulations of the evolved designs sug-
gest that all are electrically well behaved and thus suit-

able for physical implementation. The circuit represen-

tation method devised permits a wide range of circuits

to be constructed, and results in a construction process
that is unburdened with repair operations. In addition,

the representation is syntactically closed, making it well

suited for evolutionary search. For other applications,

the instruction set can be easily extended to incorporate
other devices not mentioned, such as CMOS transistors.

The main limitation of our approach is the inherent re-
striction on circuit topologies. Such restrictions can be

overcome by augmenting the instruction set, and this is

one line of investigation we are pursuing. To gain perfor-
mance on par with circuits designed by engineers, it will
be necessary to place further constraints into the fitness

functions. For example, practical amplifiers are typically
judged by a dozen or so specifications. To evolve an am-

plifier that would perform as well would require using
a multiobjective fitness function that accounts for each

sp,,cili<:ati,m Progrem.+ t,_w;tr+l._ tl,is g+.d wa..+ I,m,h+ in

the results from coevolutionary search.

Dynami(: fitness s<:he<hdes can hel I) evohlti,mary
search because they ellt:our;tge the p<)pulatiou of circuits

to fi>lhJw l)oteatially better tra je(:tori+m through P,he so-

lution space. Such traject,>ries couhi gui(te (+'volution in

many ways, for ++xample th++y (:()ul<l amplify weak gradi-

ents in the+ fitness lands('al)e, "steer around" recta-stable

solution states I16], and usefully decompose or simplify
the problem by providing partial reinforcement for in-

termediate solutions [4]. As an illustration, an amplifier

made up of a single wire has excellent performance in

terms of bias, linearity and power dissipation, but has

zero gain. Adding some components to the circuit might

increase the gain, but only at the cost of a dip in per-
formance on the other three criteria. Thus, if evolved

with a static fitness schedule (assuming equally-weighted

objectives), the single wire presents evolutionary search

with a meta-stable state that is highly attractive and po-

tentially quite difficult to escape. In contrast, the fixed

fitness schedule in the present amplifier design task en-

courages all of the performance objectives (gain, power

dissipation, bias, and linearity) to be solved in parallel by

evolution. Likewise, coevolution tends to work on gain
early in evolution and to scale back the requirements on

bias, power and linearity until circuits are performing
fairly well on gain.

In conclusion, static and coevolving fitness evaluations

did relatively well in our amplifier design task. Based on
our previous work in evolving amplifier designs, we sus-

pected that the static technique would be able to solve

this design task. We find it very encouraging that co-

evolution performed on par with static fitness schedules

and intend to pursue coevolutionary search in future cir-

cuit design tasks, especially for electronic control appli-
cations.
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